Probability-guaranteed H∞ finite-horizon filtering for a class of nonlinear time-varying systems with sensor saturations
نویسندگان
چکیده
In this paper, the probability-guaranteed H∞ finite-horizon filtering problem is investigated for a class of nonlinear time-varying systems with uncertain parameters and sensor saturations. The system matrices are functions of mutually independent stochastic variables that obey uniform distributions over known finite ranges. Attention is focused on the construction of a time-varying filter such that the prescribed H∞ performance requirement can be guaranteed with probability constraint. By using the difference linear matrix inequalities (DLMIs) approach, sufficient conditions are established to guarantee the desired performance of the designed finite-horizon filter. The time-varying filter gains can be obtained in terms of the feasible solutions of a set of DLMIs that can be recursively solved by using the semi-definite programming method. A computational algorithm is specifically developed for the addressed probability-guaranteed H∞ finite-horizon filtering problem. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.
منابع مشابه
Robust Hinfty Filtering for Markovian Jump Systems With Randomly Occurring Nonlinearities and Sensor Saturation: The Finite-Horizon Case
This paper addresses the robust filtering problem for a class of discrete time-varying Markovian jump systems with randomly occurring nonlinearities and sensor saturation. Two kinds of transition probability matrices for the Markovian process are considered, namely, the one with polytopic uncertainties and the one with partially unknown entries. The nonlinear disturbances are assumed to occur r...
متن کاملFinite time stabilization of time-delay nonlinear systems with uncertainty and time-varying delay
In this paper, the problem of finite-time stability and finite-time stabilization for a specific class of dynamical systems with nonlinear functions in the presence time-varying delay and norm-bounded uncertainty terms is investigated. Nonlinear functions are considered to satisfy the Lipchitz conditions. At first, sufficient conditions to guarantee the finite-time stability for time-delay nonl...
متن کاملVariance-Constrained Filtering for a Class of Nonlinear Time-Varying Systems With Multiple Missing Measurements: The Finite-Horizon Case
This paper is concerned with the robust finitehorizon filtering problem for a class of uncertain nonlinear discrete time-varying stochastic systems with multiple missing measurements and error variance constraints. All the system parameters are time-varying and the uncertainty enters into the state matrix. The measurement missing phenomenon occurs in a random way, and the missing probability fo...
متن کاملOptimal Finite-time Control of Positive Linear Discrete-time Systems
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...
متن کاملFinite-Horizon H∞ Control for Discrete Time-Varying Systems With Randomly Occurring Nonlinearities and Fading Measurements
This paper deals with the H∞ control problem for a class of discrete time-varying nonlinear systems with both randomly occurring nonlinearities and fading measurements over a finite-horizon. The system measurements are transmitted through fading channels described by a modified stochastic Rice fading model. The purpose of the addressed problem is to design a set of time-varying controllers such...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Systems & Control Letters
دوره 61 شماره
صفحات -
تاریخ انتشار 2012